If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+2k-7=0
a = 2; b = 2; c = -7;
Δ = b2-4ac
Δ = 22-4·2·(-7)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{15}}{2*2}=\frac{-2-2\sqrt{15}}{4} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{15}}{2*2}=\frac{-2+2\sqrt{15}}{4} $
| 2x+6=2(x+6 | | 8x+6=6x+9 | | -12n+5=-11n-7 | | -8=1/v+5 | | -18=4a-2 | | m-17=34 | | z8+3=2 | | x+8=19* | | -48=4c | | -19-n=-22 | | 3x-22=2x+8 | | 2x/7=8/28 | | 2(2x-4)=x+3(x-9)+17 | | (-8)+x=-4 | | 9(b+7)=27 | | 145+x+-5=145 | | -42=j+13 | | 124.36/2.4=p/6 | | 15x²-40x=0 | | 45y-1=134 | | m+6=14/3 | | 6+2x=3+10x | | 145+x+-5=90 | | 17+m=34 | | 6x-14=-122 | | a+31=2a | | 2/3(y+18)=1/3y+10 | | 262-139=y | | (2x-7)(x+6)=x | | H(t)=16t²+12t+10 | | x/9=9.6 | | -11+5x=64 |